

IDENTIFICATION OF THERMAL BOUNDARY CONDITIONS AND THERMO-METALLURGICAL BEHAVIOUR OF X10CrMoVNb9-1 STEEL

APPLICATION TO A « DISK-SPOT » WELDING EXPERIMENT

Guilhem-Michel ROUX^{1,2}, Olivier BLANCHOT³, René BILLARDON¹

¹ LMT-Cachan ² CEA (DEN/DM2S/SEMT/LM2S), ³ CEA (DRT/UTIAC)

AKNOWLEDGEMENTS: AYRAULT D., KICHENIN J., BRACHET J.C., DE CARLAN Y.

ROUX Guilhem-Michel DEN/SAC/DM2S/SEMT/LM2S

OUTLINE

\bigcirc > INTRODUCTION

- > MICROSTRUCTURAL CHANGES IN T91 STEELS
- SIMULATION OF THE THERMO-METALLURGICAL BEHAVIOUR OF T91 STEELS
- IDENTIFICATION OF THERMAL BOUNDARY CONDITIONS DURING A « DISK-SPOT » EXPERIMENT
- > NUMERICAL SIMULATIONS OF THE DISK-SPOT EXPERIMENT

> PERSPECTIVES

ROUX Guilhem-Michel DEN/SAC/DM2S/SEMT/LM2S

INTRODUCTION

FRAMEWORK OF THIS STUDY

Design of Very High Temperature Reactors of the future using gas coolant nominal temperature: 450°C => martensitic steel

INTRODUCTION

→ <u>NUMERICAL SIMULATION OF TIG WELDING</u>

(CAST3M welding finite element simulation with an element deposit technique)

ROUX Guilhem-Michel DEN/SAC/DM2S/SEMT/LM2S TIG torch model (heat, plasma, metal deposit,...)

 Thermo-metallo-mechanical model for materials

• Coupled heat-transfert, metallurgical and mechanical analyses

INTRODUCTION

ROUX Guilhem-Michel DEN/SAC/DM2S/SEMT/LM2S

SOME EFFECTS OF ALLOYING ELEMENTS: Chromium equivalent factor by Ezaki: $Cr_{equivalent} = \%Cr + 6.\%Si + 4.\%Mo + 1.5.\%W + 11.\%V + 5.\%Nb + 12.\%AL +$ 8.%Ti - 40.%C - 2.%Mn - 4.%Ni - 2.%Co - 30.%N - %Cu = 10.811 > 8=> Presence of δ -ferrite **CARBIDES PRECIPITATION:** \checkmark In majority : $M_{23}C_6$

DEN/SAC/DM2S/SEMT/LM2S

ROUX Guilhem-Michel DEN/SAC/DM2S/SEMT/LM2S

ROUX Guilhem-Michel DEN/SAC/DM2S/SEMT/LM2S

 \Box Tempered martensite (material initial state) \rightarrow austenite

- $\Box \quad (Austenite \leftrightarrow \delta \ ferrite)$
- $\Box \quad \text{Solid} \leftrightarrow \text{liquid}$
- \Box Austenite \rightarrow quenched martensite
- \Box (quenched martensite \rightarrow tempered martensite)

DEN/SAC/DM2S/SEMT/LM2S

✓ <u>MARTENSITIC TRANSFORMATION</u> :

Koistinen-Marburger model: $y_m(T) = y_{\gamma 0}(1 - exp(-K_m(M_s - T)))$

8 mm

500

TC1

A_{eq0}

M_s

TC6

TC2

50 mm

TC1

TC2

TC3

TC4

TC5

TC6

1500

TC5

TC3

2000

TC4

 \checkmark

temperature (°C)

TEMPERATURE RESULTS:

1000

800

600

400

200

0

0

1000

time (s)

ROUX Guilhem-Michel DEN/SAC/DM2S/SEMT/LM2S

IDENTIFICATION OF h(T) FOR LOW TEMPERATURES:

 \checkmark

ROUX Guilhem-Michel DEN/SAC/DM2S/SEMT/LM2S

œ

Comparaison between experimentations and simulations

DEN/SAC/DM2S/SEMT/LM2S

□ Temperatures (at the end of heating)

ROUX Guilhem-Michel DEN/SAC/DM2S/SEMT/LM2S

ROUX Guilhem-Michel DEN/SAC/DM2S/SEMT/LM2S

33

ROUX Guilhem-Michel DEN/SAC/DM2S/SEMT/LM2S

PERSPECTIVES

ROUX Guilhem-Michel DEN/SAC/DM2S/SEMT/LM2S proportion d austénite premier tour