Modélisation du transport réactif du césium dans un double milieu poreux

Club castem, 20/11/06

Sébastien CADALEN † , Michel QUINTARD *

[†] CEA Saclay, DEN/DM2S/SFME/MTMS* IMF Toulouse, GEMP

Modélisation du transport réactif du césium dans un double milieu porest

Plan

- Contexte et objectifs
- Choix du cas d'étude
- Modèle conceptuel du milieu
- Homogénéisation par la méthode de prise en moyenne volumique
- Changement d'échelle macro-pore \rightarrow échelle de Darcy
- Résultats et validation
- Conclusion et perspectives

Modélisation du transport réactif du césium dans un double milieu poren

O(

Contexte et objectifs

- Maitrise des risques liés à l'entreposage des déchets radioactifs
- Scénario de fuite de césium et/ou strontium
- Infiltration des polluants en subsurface
- Comprendre les interactions chimie/transport
- Approche expérimentale → colonne instrumentée (C. Latrille, DPC)
- Approche modélisation \rightarrow changement d'échelle

O(

Cas d'étude

- Materiau : sable de Fontainebleau et illite du Puy ($\approx 5\%$)
- Polluant : césium
- Conditions géochimiques : concentration élevée en potassium

Phénomènes physiques

- Transport convectif et diffusif dans le fluide
- Diffusion dans les agrégats d'argile

Phénomènes chimiques

- Sorption à la surface des feuillets d'argile
- Réversibilité
- Non-linéarité

Modèle conceptuel du milieu poreux

0(

Simplification géométrique

On caractérise la géométrie fine à l'échelle du pore par la porosité et la granulométrie

On définit un Volume Élémentaire Représentatif de notre milieu poreux

Prise en moyenne volumique

On intègre les équations sur un volume de référence, *in fine* celà revient à introduire un filtre spatial dans les équations. Pour celà on introduit des grandeurs moyennes sur les phases

$$\begin{split} \left\langle \psi \right\rangle_{i} \Big|_{\vec{x}} &= \frac{1}{V_{0}} \int_{\Omega_{i}|_{\vec{x}}} \psi\left(\vec{r}\right) \, d\Omega \qquad \text{(globale)} \\ \left\langle \psi \right\rangle_{i}^{i} \Big|_{\vec{x}} &= \frac{1}{V_{i}} \int_{\Omega_{i}|_{\vec{x}}} \psi\left(\vec{r}\right) \, d\Omega \qquad \text{(intrinsèque)} \end{split}$$

On décompose les grandeurs en une partie moyenne et des déviations

$$\psi = \langle \psi \rangle_i^i + \widetilde{\psi}_i$$

Modélisation du transport réactif du cesium dans un double milieu pore

Équations locales

$$\partial_t c_{\alpha} = -\vec{\nabla} \cdot \left(\vec{u}_{\alpha} c_{\alpha} - D_{\alpha} \vec{\nabla} c_{\alpha} \right)$$
$$\partial_t \left(r_{\beta} c_{\beta} \right) = -\vec{\nabla} \cdot \left(-D_{\beta} \vec{\nabla} c_{\beta} \right)$$

Retard dû à la rétention chimique

$$r_{\beta} = 1 + \rho_{\beta} f_d \left(c_{\beta} \right)$$

•
$$CL_1 \operatorname{sur} \Omega_{\alpha s} : \vec{n}_{\alpha s} \cdot \vec{\nabla} c_{\alpha} = 0$$

- $CL_2 \operatorname{sur} \Omega_{\alpha\beta} : \vec{n}_{\alpha\beta} \cdot \vec{\nabla} c_{\alpha} = \vec{n}_{\alpha\beta} \cdot \vec{\nabla} c_{\beta}$
- $CL_3 \operatorname{sur} \Omega_{\alpha\beta}$: $c_{\alpha} = c_{\beta}$

Deux nombres adimensionnels

$$Pe = \frac{\left\| \langle \vec{u}_{\alpha} \rangle_{\alpha}^{\alpha} \right\| l_{\alpha}}{D_{\alpha}} \quad , \quad \tau_{\beta} = \frac{D_{\beta}}{\langle r_{\beta} \rangle_{\beta}^{\beta} D_{\alpha}}$$

O(

Modélisation du transport réactif du césium dans un double milieu porse

Équations moyennées

On applique l'opérateur de prise en moyenne sur chacune des phases

$$\partial_t C_{\alpha} = -\vec{\nabla} \cdot \left(Pe \, \vec{U}_{\alpha} C_{\alpha} + \left\langle \vec{\widetilde{u}}_{\alpha} \, \widetilde{c}_{\alpha} \right\rangle_{\alpha}^{\alpha} - \vec{\nabla} C_{\alpha} - \left\langle \vec{n}_{\alpha} \tilde{c}_{\alpha} \right\rangle_{\alpha\beta}^{\alpha} \right) - \epsilon_{\alpha}^{-1} \Gamma_{\alpha\beta}$$
$$\partial_t \left(R_{\beta} \, C_{\beta} \right) = \vec{\nabla} \cdot \tau_{\beta} \left(\vec{\nabla} C_{\beta} + \left\langle \vec{n}_{\beta} \widetilde{c}_{\beta} \right\rangle_{\alpha\beta} \right) + \epsilon_{\beta}^{-1} \Gamma_{\alpha\beta}$$

On reconnait les termes classiques de convection et de diffusion... ... et des termes faisant intervenir les deviations, ils sont à l'origine de la dispersion, la tortuosité...

On calcule les champs \widetilde{c}_{α} et $\widetilde{c}_{\beta} \rightarrow$ problème de fermeture

$$\mathcal{F} = \mathcal{D} - \mathcal{M}$$
$$\{\partial_t \widetilde{c}_\alpha = \dots\} = \{\partial_t c_\alpha = \dots\} - \{\partial_t C_\alpha = \dots\}$$

Problème de fermeture

Diverses hypothèses nous permettent de simplifier le problème

- Séparation des échelles
- Interfaces statiques
- Periodicité du milieu

On aboutit à la résolution de trois problèmes de fermeture simplifiés \rightarrow de nature intégro-différentielle, en régime permanent

$$\vec{\nabla} \cdot \left(Pe \, \vec{u}_{\alpha} \vec{b}_{\alpha\alpha} - \vec{\nabla} \vec{b}_{\alpha\alpha} \right) = -Pe \, \vec{\tilde{u}}_{\alpha} + \epsilon_{\alpha}^{-1} \vec{s}_{\alpha} \quad \text{sur } \Omega_{\alpha}$$
$$\vec{\nabla} \cdot \left(-\tau_{\beta} \vec{\nabla} \vec{b}_{\beta\alpha} \right) = -\epsilon_{\beta}^{-1} \vec{s}_{\alpha} \quad \text{sur } \Omega_{\beta}$$
$$\text{CL}_{1} \qquad \vec{n}_{\alpha} \cdot \vec{\nabla} \vec{b}_{\alpha\alpha} = -\vec{n}_{\alpha} \quad \text{sur } \Omega_{\alpha\beta}$$
$$\text{CL}_{2} \qquad \vec{b}_{\alpha\alpha} - \vec{b}_{\beta\alpha} = 0 \quad \text{sur } \Omega_{\alpha\beta}$$
$$\text{CL}_{3} \quad \vec{n}_{\alpha} \cdot \vec{\nabla} \vec{b}_{\alpha\alpha} + \vec{n}_{\beta} \cdot \left(\tau_{\beta} \vec{\nabla} \vec{b}_{\beta\alpha} \right) = -\vec{n}_{\alpha} \quad \text{sur } \Omega_{\alpha\beta}$$
$$\vec{s}_{\alpha} = \left\langle \vec{n}_{\alpha} \cdot \vec{\nabla} \vec{b}_{\alpha\alpha} \right\rangle_{\alpha\beta}$$

Modèle homogénéisé

L'impact de \tilde{c}_{α} et \tilde{c}_{β} sur l'évolution des concentrations moyennes est modélisé par des coefficients effectifs calculés via le problème de fermeture.

$$\partial_t C_{\alpha} = -\vec{\nabla} \cdot \left(\vec{U}_{\alpha\alpha} C_{\alpha} + \vec{U}_{\alpha\beta} C_{\beta} - \overline{\overline{K}}_{\alpha\alpha} \cdot \vec{\nabla} C_{\alpha} - \overline{\overline{K}}_{\alpha\beta} \cdot \vec{\nabla} C_{\beta} \right) - \epsilon_{\alpha}^{-1} \Gamma_{\alpha\beta}$$
$$\partial_t \left(R_{\beta} C_{\beta} \right) = -\vec{\nabla} \cdot \left(\vec{U}_{\beta\alpha} C_{\alpha} + \vec{U}_{\beta\beta} C_{\beta} - \overline{\overline{K}}_{\beta\alpha} \cdot \vec{\nabla} C_{\alpha} - \overline{\overline{K}}_{\beta\beta} \cdot \vec{\nabla} C_{\beta} \right) + \epsilon_{\beta}^{-1} \Gamma_{\alpha\beta}$$
$$\Gamma_{\alpha\beta} = h_{\alpha\beta} \left(C_{\alpha} - C_{\beta} \right)$$

On reconnait certains termes classiques

- la dispersion hydrodynamique $\overline{\overline{K}}_{\alpha\alpha}$ ($m^2.s^{-1}$)
- la vitesse convective $\vec{U}_{\alpha\alpha}$. ($m.s^{-1}$)
- le coefficient d'échange linéaire $h_{\alpha\beta}$ (s⁻¹)

La procedure

- 1. Définition et maillage de la géométrie du VER
- 2. Calcul du champs de vitesse (Stokes, $Re \ll 1$)
- 3. Résolution des problèmes de fermeture
- 4. Calcul des coefficients effectifs
- 5. Résolution du système homogénéisé
- 6. Résolution des équations locales
- 7. Validation de la méthode par comparaison

Modélisation du transport réactif du césium dans un double milieu poreux

Castem

Opérateurs liés à la mécanique des fluides en éléments finis (KONV, LAPN, ...)

 \rightarrow Les petits +

Grande flexibilité pour tester rapidement un algorithme

- Couplage implicite/explicite de diverses équations (KOPS 'CHANINCO')
- Imposer une relation intégrale sur une variable (RELA)
- Imposer une relation de periodicité en implicite (RELA)

Possibilité de tester plusieurs méthodes de résolution (KRES)

 \rightarrow Les petits -

Pré-traitement, maillage de géométries complexes Post-traitement

Coefficient d'échange

Les solutés diffusent à travers l'interface $\Omega_{\alpha\beta}$. À l'échelle de la colonne le milieu est représenté par un continuum, les interfaces ne sont plus représentées. Le coefficient $h_{\alpha\beta}$ intègre les flux sur cette interface.

Ce coefficient augmente avec le *Pe*, on distingue deux régimes.

En régime diffusif l'échange est suffisamment important pour maintenir l'équilibre ($C_{\alpha} \approx C_{\beta}$) alors qu'en régime dispersif l'effet double-milieu prend toute son importance.

Disperion hydrodynamique

On retrouve un comportement similaire à celui d'un sable réel : un régime diffusif affecté par la tortuosité pour des vitesses faibles, suivi d'un régime de transition et d'un régime dispersif régit par une loi puissance.

$$K_{\alpha\alpha,xx} = 1 + \langle n_{\alpha,x} \times b_{\alpha\alpha,x} \rangle^{\alpha}_{\alpha\beta} - Pe \langle \widetilde{u}_{\alpha,x} \times b_{\alpha\alpha,x} \rangle^{\alpha}_{\alpha} = \tau + \lambda_L \left(Pe \right)^{m_L}$$

Validation de la méthode

On compare une solutionn du modèle homogénéisé à la solution moyennée du problème direct.

	Pe	r_eta	ϵ_{lpha}	ϵ_eta
а	10^{1}	5	0.4	0.041
b	10^{3}	1	0.4	0.041

0(

Modélisation du transport réactif du césium dans un double milieu pareux

O(

Conclusion

- \rightarrow Prise en moyenne volumique
 - Hiérarchisation des processus
 - Estimation des coefficients effectifs et leur domaine de validité
 - Limitation : milieux naturels complexes, hétérogénéités à toutes les échelles
- $\rightarrow \text{Castem}$
 - Prise en main demandant de l'investissement et du temps
 - Maléabilité du 'code recherche'
 - Proximité des développeurs
- \rightarrow Perspectives (fin de thèse : septembre 2007)
 - Interprétation de données expérimentales
 - Écoulement diphasique air/eau à l'échelle du pore (*Stokes-Cahn-Hilliard*)