

Finite Elements Modelling of Tritium Permeation

Tritium diffusion and convection in LiPb

Wilfrid Farabolini – Frédéric Dabbene

Direction de l'Energie Nucléaire

Club Castem ^{Wilfrid Farabolini} 1 26 nov. 04

A Fusion Power Reactor

Schematic Fluids Circulation in the PPCS Reactor

 $J_{1} = 610 \text{ g/day (4000 MW fusion power)}$ $Q_{He} = 4000 \text{ kg/s } (T_{in} = 300^{\circ}\text{C}, T_{out} = 500^{\circ}\text{C}, P = 8.0 \text{ MPa}$

Concept of the HCLL Blanket Modules

Demo Module

Breeding Unit

Direction de l'Energie Nucléaire

Club Castem 26 nov. 04

Wilfrid Farabolini

4

Analytical Model – Tritium Mass Balance Equations 1/2

 J_3

- **J**₁ : Production rate
- **J**₂ : Extraction from LiPb
 - η_{LiPb} : extractor efficiency for LiPb
 - C_{out}: Tritium output concentration in LiPb (mol m⁻³),

LiPb

- G_{LiPb}: LiPb flow rate (m³ s⁻¹)
- J₃: Permeation towards He coolant
 C_{ave}: Tritium average concentration in LiPb (mol m⁻³)
 K_{blanket}: Blanket permeation factor (m³ s⁻¹)
- J₄ : Extraction from He coolant
 - G_{He} : He flow rate to detritiation unit (m³ s⁻¹)
- **J**₅ : Release to environment
 - L_{SG} : Steam Generator leak flow (m³ s⁻¹)
 - K_{SG}: SG permeation factor (m³ s⁻¹)

Direction de l'Energie Nucléaire

J₅ He J 610 g / day $J_2 = \eta_{LiPh} C_{out} G_{LiPh}$ $J_3 = C_{ave} K_{blanket}$ $J_4 = \eta_{He} C_{He} G_{He}$ $J_5 = C_{He} (K_{SG} + L_{SG})$ $(J_5 \max \neq 1 \text{ g/yea}) = 27 \text{ Ci/day}$, ITER standard)

Club Castem ^{Wilfrid Farabolini} 26 nov. 04

Analytical Model – Tritium Mass Balance Equations 2/2

- A, s : respectively wall surface (m²) and wall thickness (m). ٠
- Ks_{steel} Ks_{LiPb} : Sievert constants (mol m⁻³ Pa^{-1/2}), respectively in Eurofer and in LiPb
- D_{steel} Tritium diffusivity in Eurofer (m² s⁻¹)
- **PRF**_b is the Permeation Reduction Factor provided by permeation barrier (if any) •

Stationary results (*):

$$J_{3} = \frac{J_{1}}{1 + \frac{2\eta_{\text{LiPb}}}{2 - \eta_{\text{LiPb}}}} \frac{G_{\text{LiPb}}}{K_{\text{blanket}}} \qquad J_{5} = \frac{J_{3}}{1 + \eta_{\text{He}}} \frac{G_{\text{He}}}{(K_{\text{SG}} + L_{\text{SG}})}$$

$$\left(1 + \frac{2\eta_{\text{LiPb}}}{2 - \eta_{\text{LiPb}}} \frac{G_{\text{LiPb}}}{K_{\text{blanket}}}\right) \left(1 + \frac{\eta_{\text{He}}}{K_{\text{SG}} + L_{\text{SG}}}\right) \ge \frac{J_{1}}{J_{5,\text{MAX}}}$$

* Thanks to Italo Ricapito (ENEA consultant) who initiated these computations

Direction de l'Energie Nucléaire

Wilfrid Farabolini Club Castem 26 nov. 04

6

Computation of K_{blanket} for PPCS

For T_{ave} =480 °C $K_{steel} D_{steel}/K_{Lipb} = 2.7 \ 10^{-8} \ m^2 \ s^{-1}$ $K_{blanket} = 1.09 / PRF \ m^3 \ s^{-1}$

Tritium flow towards He coolant (J₃)

- $K_{blanket} = 1.09 / PRF_b m^3 s^{-1} (T_{ave} = 480 °C, 180 modules)$
- $\eta_{\text{LiPb}} = 0.8$ (reasonable efficiency for packed column extractor)
- G_{LiPb} limitation due to LiPb velocity (MHD pressure drops and corrosion)

Justification of the FEM Study

- Previous analytical computations made the assumption that all the produced tritium is immediately available for permeation through the Eurofer walls.
 - Actually, T has to travel through the LiPb bulk before reaching the walls.
 - Considering that:
 - T diffusivity in LiPb is about 10 times smaller than in Eurofer.
 - LiPb layer thickness is 40 times larger than Cooling Plates wall thickness in present Breeding Unit design.
 - Ignoring these facts might lead to very pessimistic results (nearly all the produced T escapes into the He coolant, if no permeation barriers are used).

CAST3M Model of the BU used for the study

Cast3M results – homogeneous T concentration

Direction de l'Energie Nucléaire

Club Castem ^{Wilfrid Farabolini} 11 26 nov. 04

Diffusion with Poiseuille velocity profile

v = 1.0 mm/s 72 recycling/day

9.4 % of permeation

Direction de l'Energie Nucléaire

Club Castem ^{Wilfrid Farabolini} 12 26 nov. 04

Some velocity profiles induced by MHD

Direction de l'Energie Nucléaire	Club Castem	Wilfrid Farabolini	13
	26 nov. 04		

Diffusion with flat velocity profile

Direction de l'Energie Nucléaire

Club Castem ^{Wilfrid Farabolini} 14 26 nov. 04

Permeation vs. LiPb Velocity for various cases

Application of ITER duty factor (400 s / 1800 s)

v = **0.2 mm/s**

Direction de l'Energie Nucléaire

Club Castem ^{Wilfrid Farabolini} 16 26 nov. 04

Conclusions

- Taking into account T diffusion in the LiPb bulk drastically reduces the permeation rate as previously analytically computed.
 - Further works are to be completed to assess the LiPb flow (thermal convection with MHD, duct expansion/contraction, possible stagnation areas)
 - Further refinement can be introduced in the model (temperature chart for diffusivity, input T concentration, Stiffening Plates, 3D)
 - However, higher confidence in these results can only come from experimentation
 - Cast3M allows to fit TBM experiments in ITER in order to find Power Reactor equivalent working points