Club CASTEM 2004

November 26, 2004.

Simulation of HDR and BMC Hydrogen Combustion Tests with the TONUS code and CREBCOM model.

Hydrogen Deflagration Test Ex29 (BMC).

<u>Initial conditions</u>: 10 % H_2 , P = 1 bar, T = 337 K.

Governing Equations. CREBCOM combustion model.

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{u}) = 0 \tag{1}$$

$$\frac{\partial \rho Y_k}{\partial t} + \vec{\nabla} \cdot (\rho \vec{u} Y_k) = \rho \dot{\omega}_k \tag{2}$$

$$\frac{\partial \rho \vec{u}}{\partial t} + \vec{\nabla} \cdot (\rho \vec{u} \otimes \vec{u} + P\mathbf{I}) = \rho \vec{g}$$
(3)

$$\frac{\partial \rho e_t}{\partial t} + \vec{\nabla} \cdot (\rho \vec{u} h_t) = \rho \vec{g} \cdot \vec{u} - \rho \sum_j h_j^0 \dot{\omega}_j - H(T - T_0) \quad (4)$$

$$\frac{\partial \rho K_0}{\partial t} + \vec{\nabla} \cdot (\rho \vec{u} K_0) = 0$$
(5)

$$\frac{\partial \rho Y_{H_2,f}}{\partial t} + \vec{\nabla} \cdot \left(\rho \vec{u} Y_{H_2,f}\right) = 0 \tag{6}$$

$$\frac{\partial \rho Y_{H_2,i}}{\partial t} + \vec{\nabla} \cdot (\rho \vec{u} Y_{H_2,i}) = 0$$
(7)

Where

$$H_2 + \frac{1}{2}O_2 \longrightarrow H_2O$$
$$\xi = \frac{Y_{H_2} - Y_{H_2,i}}{V_1 - V_2}$$

$$\dot{\omega}_{\xi} = \frac{K_0}{\triangle x} \times \{criter.function\}$$

"Automatic" Determination of the parameter K₀

METHOD (I) <u>Source</u>: A.A. Efimenko and S.Dorofeev. CREBCOM code system for description of gaseous combustion (2001).

$$\mathbf{K}_{0} = \frac{\sigma + 1}{4} \mathbf{S}_{\mathrm{T}} = \frac{\mathbf{S}_{\mathrm{T}}}{\mathbf{S}_{\mathrm{L}}} \times \frac{\sigma + 1}{4} \mathbf{S}_{\mathrm{L}}$$
(8)

Where

$$\frac{S_T}{S_L} = 0.5(\sigma - 1) \left(\frac{L}{\delta}\right)^{1/3} Le^{-2/3} \quad if \quad \frac{L}{\delta} > 500$$

$$\frac{S_T}{S_L} = 0.0008(\sigma - 1)^3 \left(\frac{L}{\delta}\right) \quad if \quad \frac{L}{\delta} < 500$$

$$L = L_c \times max(0.1; 0.5(1 - \sqrt{1 - BR}))$$

METHOD (II) <u>Source</u>: S.Dorofeev and R. Redlinger. Description of FLAME3D (2003).

$$\mathbf{K}_{0} = \frac{\sigma + 3}{8} \mathbf{S}_{\mathrm{T}} = \frac{\mathbf{S}_{\mathrm{T}}}{\mathbf{S}_{\mathrm{L}}} \times \frac{\sigma + 3}{8} \mathbf{S}_{\mathrm{L}}$$
(9)

where

$$\frac{S_T}{S_L} \approx 30.0$$
 for $V/S/dx \approx 6.0$

METHOD (III) <u>Source</u>: P. Pailhories. Bilan des calculs de combustion multi-D réalisés avec le modèle CREBCOM du code TONUS (2003).

$$\mathbf{K_0} = \mathbf{66.7} \times \mathbf{S_L} \qquad for \qquad V/S/dx \approx 2.0 \tag{10}$$

Presentation of the Ignition Problem

10.2 m

Two ways of ignition:

- AICC (Adiabatic Isochore Complete Combustion) $\rho_2 = \rho_1$; ($T \approx 1300$ K, $P \approx 3.65 \times 10^5$ Pa).
- AIBC (Adiabatic IsoBare complete Combustion) $P_2 = P_1$. ($T \approx 1086$ K).

Pressure and velocity evolution at the capteur

Choice of the Numerical Scheme (1)

a) Flux Vector Splitting scheme (VLH)

$$\mathbf{F}_{num}(\mathbf{U}_L,\mathbf{U}_R) = \mathbf{F}^+(\mathbf{U}_L) + \mathbf{F}^-(\mathbf{U}_R)$$
(11)

Stationary contact line is diffused.

b) Flux Difference Splitting scheme (SS)

$$\mathbf{F}_{num}(\mathbf{U}_L, \mathbf{U}_R) = \mathbf{F}(RP(0; \mathbf{U}_L, \mathbf{U}_R)$$
(12)

Stationary contact line is resolved.

Choice of the Numerical Scheme (2)

1D results.

Figure 1: Hydrogen Mass Fraction Evolution using VLH scheme (left) and SS scheme (right)

Figure 2: Temperature isolines at t = 1.0 s using VLH(2nd order) scheme (left) and SS(2nd order) scheme (right). $\triangle T$ between isolines is 62.75 K.

E12.3.2 computation using 2D geometry.

Method	R1904	R1905	R1801
Ι	7.48	7.48	11.08
II	9.38	9.38	9.38
III	18.9	18.9	18.9
2D, present comp.	0.41	0.41	3.7
3D, present comp.	0.55	0.55	2.8

Table 1: **HDR Test E12.3.2**. Values of K_0 computed using different methods.

E12.3.2 computation. Mesh of 1074 and 4256 elements

2D version of the E12.3.2 computation. Hydrogen Mass Fraction Evolution. Fine Mesh. t = 2.4 s, t = 2.5 s and t = 2.9 s

Pressure evolutions. Effect of the Grid Refinement.

Figure 3: HDR test E12.3.2 in 2D geometry. Pressure histories corresponding to the coarse mesh (top) and the fine mesh (bottom). The red line corresponds to the experimental results.

3D. Pressure evolutions. Effect of the Grid Refinement.

Figure 4: **HDR test E12.3.2 in 3D geometry**. Pressure histories corresponding to the coarse mesh (top) and the fine mesh (bottom). **The grey line corresponds to the experimental results.**

Hydrogen Deflagration Test Ex29.

Method	R7a	R7b	R5
Ι	12.86	13.04	18.13
II	11.4	11.4	11.4
III	33.6	33.6	33.6
3D, present comp.	0.265	25.0	20.0

Table 2: **BMC Test Ex29**. Values of K_0 obtained using different methods.

Figure 5: **BMC test Ex29 in 3D geometry**. Grid of 1098 elements (left; $\triangle x_{ave} = 0.41526$ m) and grid of 8832 elements (right; $\triangle x_{ave} = 0.2078$ m)

Hydrogen Defagration Test Ex29.	
Hydrogen Mass Fraction Isolines at	
t = 2.875 s, $t = 2.925$ s and $t = 2.95$ s	

Figure 6: **BMC test Ex29 in 3D geometry**. Pressure histories corresponding the coarse mesh (left) and the fine mesh (right). **The red line corresponds to the experimental results.**